Oiras' chou Dimensional Expansion

Group7 Kento Yamaguchi Koji Shiogai Kozo Shimada Sora Tazaki Toshitaka Nakamura

Summary

The dimensional expansion of Menelaus' theorem Manelaus' The

Menelaus' theorem, Manelaus' Theorem is proved.

• The inverse of Manelaus' Theorem cannot be valid.

• Ceva's Theorem in 3-D is proved.

 We suggest some ways of solving the kissing number problem.

Motive

One of Sora's dreams is to make Doraemon. It is necessary to know other dimensional worlds in order to make it. So we decided to elucidate them with mathematics.

Definition

n-D

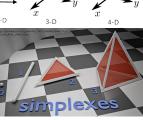
A world with n primary independent coordinate axes.

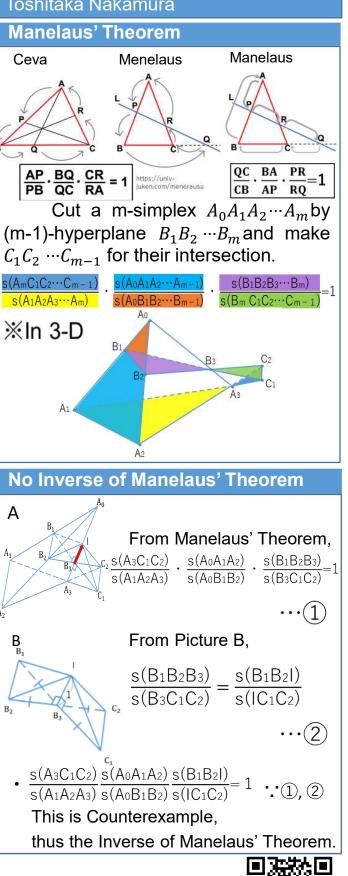
n-simplex

A generalization of the notation of a

triangle or a tetrahedron to arbitrary dimensions.

n-face A generalization of the notation of a vertex or a edge or a face


n-hyper volume A generalization of the notation of length or square or volume. $s(C_0C_1C_2...C_n)$ stands for the hyper volume of simplex $C_0C_1C_2...C_n$.


n-unit ball

A generalization of the notation of a unit circle or a unit ball.

polytope

A generalization of the notation of a polygon or a polyhedron.

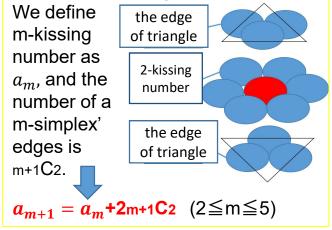
Kissing Number Problem

How many m-unit balls can you arrange so that they touch one m-unit ball without overlapping?

1.Oiras' chou Polytope theorem... Euler's polyhedron formula can be expanded in n-D.

About a m-polytope, we named it A. We also named the number of n-face $f(m_A,n)$.

 $X(A) = \sum_{n=0}^{m-1} (-1)^n f(m_A, n) = 1$ The centers of the unit balls \rightarrow The most dense regular polytope $\left\{\frac{mC_1}{a_{m-1}-1} - \frac{mC_2}{2} + \frac{mC_3}{2} - \dots + (-1)^{m-1} - \frac{mC_m}{2} + (-1)^m\right\} = 1$


(m=3,4)

2. m-dimensional Electronic Capacity Theory

Add up the numbers of s, p, d orbital and subtract the number of symmetrical d orbit like d_{xy} , d_{yz} , d_{zx} , and multiply by the number of spin. Define $f_m(n)$ as electronic capacity of m-dimensional atom's *n*th shell.

 $a_m = (m-1)\{f_m(1) + f_m(2) + f_m(3) - mC_2\}$ (3 \le m \le 5)

3.Attention to the number of edges

Ceva's Theorem in 3-D

<u>d=21</u>

(2022.9.15)