円分体の部分体の決定

田辺 隆晟 時田 真之介 宮田 航平 村木 智直

抄録

有理数体 \mathbb{Q} に1のべき根 ζ_n を加えた数体系である円分体 $\mathbb{Q}(\zeta_n)$ は、代数学において基本的 かつ重要な研究対象である。我々はその円分体の部分体をすべて明示的に表す方法を新たに 発見し、その証明に成功した。

1. 研究の背景と目的

"有理数体 \mathbb{Q} のすべての Abel 拡大体は円分体 $\mathbb{Q}(\zeta_n)$ の部分体である"という、Kronecker-Weber の定理なるものが知られている。我々はこの定理の主張から円分体の部分体を求める ことに一般性や重要性を見出し、これを目的として研究を行った。

2. 前提知識

- ・1のn乗根…n乗して1になるn個の複素数のこと。 $\zeta_n = \cos(2\pi/n) + i\sin(2\pi/n)$ とお くと、その n 個は $\zeta_n, \zeta_n^2, \dots, \zeta_n^n$ と表される。
- ・原始n乗根…1のn乗根の中で、n乗して初めて1になる数。nと互いに素な整数kを用 いて ζ_n^k と表される。
 - ・円分体…有理数と ζ_n で四則演算して得られる数の集合。 $\mathbb{Q}(\zeta_n)$ とかく。
- ・Galois の基本定理…円分体からそれ自身への写像であって、ある扱いやすい条件をみた すものの集合を Galois 群という。円分体のすべての部分体は、この Galois 群の部分群と 1 対1に対応する。

3. 方法

 $\mathbb{Q}(C_n)$ のすべての部分体を明示的に表す方法の概要を記す。

Galois の基本定理より、すべての部分体を考えるときに Galois 群の部分群それぞれに対 応する部分体(以下 $M_{(n,H)}$ とかく)を考えればよいので、以下の手順で $M_{(n,H)}$ を求める。

- ① 円分体の基底を求める。右式の ξ_n で基底を構成できる。 $\xi_n = \sum_{rad(n)|m|n} \zeta_m$ ※ただし rad(n) 以正敷物 r の互いに異なる表因物の積を表し rad(n)※ただし rad(n) は正整数 n の互いに異なる素因数の積を表し、 Σ は rad (n) の倍数かつ n の約数である正整数 m すべてについて和を取ることを表す.
- ② $M_{(n,H)}$ の基底を求める。右式の $\beta_{(n,H)}$ で基底を構成できる。 $\beta_{(n,H)} = \sum_{\sigma \in H} \sigma(\xi_n)$
- ③ \mathbb{Q} に $\beta_{(n,H)}$ を添加すれば $M_{(n,H)}$ になることがわかる。

4. 結果と考察

円分体の部分体は $M_{(n,H)} = \mathbb{Q}(\beta_{(n,H)})$ と表せることがわかった。 ζ_n を用いてもうまくいか なかったところで、新たに ξ_n を定義したことにこの研究の独自性がある。一部のnについて は $M_{(n,H)}$ の整数環を求めることができたが、一般の n については求めることができていな いので、今後の目標としたい。

5. 参考文献

- ・雪江明彦「代数学2 環と体とガロア理論」 日本評論社
- 6. **キーワード** 円分体 1 のべき根 体の拡大

0315 Shiga Prefectural Zeze High School

The Subfield of The Cyclotomic Field

Ryusei Tanabe Shinnosuke Tokita Kohei Miyata Tomonao Muraki

A cyclotomic field $\mathbb{Q}(\zeta_n)$, which is a number field obtained by adjoining a Abstract complex root of unity ζ_n to the field of rational numbers \mathbb{Q} , is basic and important in algebra. We discovered a way to explicitly express all of the subfields of the cyclotomic field and succeeded in proving it.

1. Introduction

"Every finite abelian extension of $\mathbb Q$ is a subfield of $\mathbb Q(\zeta_n)$ ". This is known as Kronecker-Weber theorem. We found the generality and importance of the assertion of this theorem in the search for subfields of $\mathbb{Q}(\zeta_n)$, and this was the purpose of our research.

2. Basic Knowledge

- n-th roots of unity···They are complex numbers that yields 1 when raised to power n. Let ζ_n be $\cos(2\pi/n) + i\sin(2\pi/n)$, the roots are expressed as $\zeta_n, \zeta_n^2, \dots, \zeta_n^n$.
- Primitive roots of unity···Let x be an n-th root of unity, if x is not an mth-root of unity for m < n, x is a primitive nth-root of unity. If k and n are coprime, ζ_n^k is primitive n-th roots of unity.
- Cyclotomic field···It is a set obtained by four arithmetic operations with \mathbb{Q} and ζ_n .
- Fundamental theorem of Galois theory...Galois group is a set of maps from $\mathbb{Q}(\zeta_n)$ to itself that satisfy certain tractable conditions. This theorem asserts that there is a one-to-one correspondence between the subfield of $\mathbb{Q}(\zeta_n)$ and subgroups of its Galois group.

3. Method

The following is an overview of how to explicitly represent all subfields of $\mathbb{Q}(\zeta_n)$.

By using Fundamental theorem of Galois theory, we only have to discuss the subfields that corresponds to the subgroups of Galois group. Hereafter, we express the subfields $\xi_n = \sum_{rad(n)|m|n} \zeta_m$ as $M_{(n,H)}$. The following procedure is used to obtain $M_{(n,H)}$.

- ① First, we found the basis of $\mathbb{Q}(\zeta_n)$. We obtained the basis by using ξ_n defined by the following formula.
- We obtained the basis by using $\beta_{(n,H)}$ defined by the following formula. $\beta_{(n,H)} = \sum_{\sigma \in H} \sigma(\xi_n)$ Thirdly, we found that we can set \mathbb{R}^n ② Secondly, we found the basis of $M_{(n,H)}$.
- ${ \mathfrak J}$ Thirdly, we found that we can get $M_{(n.H)}$ by adjoining $eta_{(n.H)}$ to ${ \mathbb Q}$.

4. Results and Discussion

We found $M_{(n,H)}=\mathbb{Q}(eta_{(n,H)})$. If we had based our study solely on ζ_n , it would not have developed, but the new definition of ξ_n made our study work. The uniqueness of our study lies in that we defined it. We were able to obtain the ring of integers of $M_{(n,H)}$ for some n, but not for n in general. We would like to discuss that in the future.

5. References

- Akihiko Yukie Daisugaku 2 Kan to tai to Galois riron NIPPON HYORON SHA
- 6. **Key Words** Cyclotomic fields Roots of unity Field extension